If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(42z^2)+19z=0
a = 42; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·42·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*42}=\frac{-38}{84} =-19/42 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*42}=\frac{0}{84} =0 $
| (5n^2)+14n+8=0 | | (x-9)+(x+5)=168 | | (x-9)(x+5)=168 | | -8(2y+2)=0 | | -4(-r+2)=4 | | (13u^2)+43u=0 | | (28y^2)+5y=0 | | -5(-3k-2)=-65 | | (u^2)-17u-18=0 | | (z^2)-11z+10=0 | | 2x4−166x2=−324x= | | 4x-33=-15 | | (25p^2)-38p=0 | | (h^2)-33h=0 | | 18+0.12x=9+0.17x | | (k^2)+12k=0 | | (x^2)+21x+20=0 | | (p^2)+6p+9=0 | | 2x−4=x+1 | | 5^3-10^2=x(8-2)+2x=3x | | (m^2)-11m=0 | | (s^2)-12s+20=0 | | (4x3)x(2x)=48 | | 7x−6=8x-27 | | a=(a+20)(a+5) | | 16x-38=17x-26 | | 3(z−12)−17=–11 | | (f^2)+29f=0 | | 26x+22=9x+1 | | x2−2=38 | | 2x+26=x+25=180 | | 2x+26=x+25=1280 |